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1. INTRODUCTION

Multiple-station measurements of lightning-
caused electric field changes (AEs) have been studied

for years to determine the location, magnitude, and

polarity of the charges deposited in a lightning flash

(see for example, Workman and Holzer [1939];
Jacobson and Krider [1976]; Krehbiel and Brook

[1979]; Maier and Krider [1986]; Koshak and Krider

[1989]; Koshak and Krider [1993]). A variety of

inversion techniques have been applied to derive

charge solutions from the finite number of ground-

based AE values. It is important to emphasis that

these solutions are inherently nonunique since an

imemity of charge distributions can produce identically
the same set of AE observations [e.g., the fields

outside any spherically symmetric sources of radius r

and total charge Q, are identical]. Additionally,
measurement errors can erode or otherwise distort

the information contained in the AEs resulting in

erroneous solutions. Depending on the inversion

algorithm employed and the number and placement of

measurements at the ground, numerical inversion of

AEs can result in the amplification of measurement

errors that lead to spurious solutions [Koshak and
Krider, 1993].

In the present study, we review the primary

means available for determining lightning charge
solutions from AE observations and we introduce a

new approach that is intimately related to the previous
studies, but that offers some distinct advantages. The

method, based on a formal multipole expansion of the

lightning charge distribution, is tested using computer

simulated sources and the geometry of the NASA

Kennedy Space Center and USAF Eastern Space and

Missile Center (KSC-ESMC) ground-based field mill

network operated in 1978.

2. NONLINEAR ANALYSES

In nonlinear AE analyses, a charge model
comprised of a certain number of charge parameters

(i.e., the location and values of charges and/or charge

moments) is used to describe the actual charges
deposited in a flash. The optimum values of these

parameters are determined so that the model fields at

the ground agree favorably with the measured

lightning field changes. Application of nonlinear

model analyses have primarily been limited to simple
point charge (Q) or point dipole (P) models. The
mathematical form of the Q-model is:

= 2Qz (1)
4'_% [ (x-xt) z 4- (y-yi) = + z1 y

where AE i is the model field change value produced
at the i tla measurement site due to a model point

charge Q located at (x, y, z). The ith site is located at

(xi , Yi), and % is the permittivity of free space.
Similarly, the fields produced at the ground due to a

point dipole source (P-model) take the form:

,[ ,,}l,, lq (2)

where R i = (x-x i , Y'Yi, z) points from the ith field site
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to the model point dipole, P = (Px, Py, Pz). Hence,
the Q- and P- models involve 4 (x, y, z, Q) and 6

(x, y, z, P) parameters, respectively.
In order to find the optimum model

parameters, a nonlinear Chi-squared function of the

form, X 2 = _(AE i - gi)2/oi 2 is minimized. Here, gi

and o i represent the measured field change and
associated measurement error at the ith measurement

site, respectively. If the value of X 2 is sufficiently

small the model solution is assumed valid [Jacobson

and Krider, 1976]. Generally speaking, the Q-model

is used to describe ground discharges while the P-
model is used to describe cloud discharges. In

practice, both the Q- and P- models are used to

analyze the same event, and the model that provides

a better fit to the AE data (i.e. that produces a
smaller value of X2) is chosen as the optimum
solution.

is discretized with typically 2 km spatial resolution and

the charges at each grid point in this 'solution grid'
are taken as the only unknowns in the problem. The

discrete form of the integral in (3) can be written as:

g =Kf+o (4)

where f is a column vector of j = 1 ..... n unknown
charges, g is a set of m measurements with errors, o,

(i.e., gi = AEi + °i, i = 1,...,m), and K is a (mxn)

kernel matrix relating field to charge. This system is
linear in the charges, f, and is amenable to various

constrained inversion solutions [Twomey, 1977;
Koshak and Krider, 1993].

4. BASIC LIMITATIONS

3. LINEAR ANALYSES

In more recent years, a linear method has

provided solutions in terms of general volume

distributions of charge [Koshak, 1991; Koshak and
Krider, 1993]. This approach has provided a

framework for determining the information content in

a set of AE measurements, and provides a general

means for adding external constraints to the charge

solution (i.e. constraints above and beyond those

inherent in the measurements). A charge density
distribution, Ap(r), is related to fields at the ground,

AE i , in terms of a linear Fredholm integral equation
of the first kind [Koshak and Krider, 1993]:

AE i _-f Kt(r) A p(r) dV (3)
V

The kernel functions, Ki(r), are geometrical functions
derived from Coulomb's Law of electrostatics. For

distant lightning, the kernel functions approach zero

so that the field sensors no longer "see" the lightning-
caused perturbations in charge density. For this

reason it has been difficult to obtain accurate charge

solutions for distant lightning sources [Koshak and

Krider, 1991].
In this approach, there is no explicit search

for the location of charges (i.e., of nonlinear

parameters). Instead, the location of the unknown

lightning source distribution is determined at a

number of predefmed points, r = r 1 .... , rn , above
the measurement network. The volume of interest, V,

The nonlinear analyses described in section 2

have been used to study both ground and cloud

flashes in a variety of storms centered near or over

the KSC field mill network [Koshak and Krider, 1989;

Koshak and Krider, 1991]. Because independent runs
of both Q- and P- models must be used to analyze a

single lightning event (and to discriminate a ground

flash from a cloud flash) additional computing time is

required.

In addition, many flashes are not fit by either

a simple Q- or P- model. This can pose a problem
for studies that depend on using AE analyses to

estimate the time-averaged lightning currents and

altitudes of charge centers in a thunderstorm [DriscoU

et al., 1992]. To resolve a greater fraction of events,

it is possible to use more complicated nonlinear

models (e.g. models with 2, 3, or more charges) but

these models are not unique, are difficult to constrain,

and require more computing time.

Furthermore, determining the absolute
minimum of the nonlinear X 2 hypersurface is not

always possible given conventional gradient-expansion
minimization methods of the type described in

Bevington [1976]. Physically unreasonable charge

model parameters can result when a parameter search
terminates in a relative minima of the X2 function.

By comparison, only one run of the linear
method is normally required to analyze a lightning

event. External constraints can be applied to suppress

solution instability given the vast number of unknown

charges inherent in this method. However, with only

ground-based measurements, basic vertical dipole

retrievals are, for instance, difficult [Koshak and

Krider, 1993] and more work must be done to
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improve constraints, and computing time.
A computationally quick method that can be

applied to a wide variety of lightning flashes is

described in detail below. This approach can be

viewed as a compromise between the simple nonlinear
charge models and the general linear method. As

such, the new approach has many virtues of the earlier

methods, but is free of many of the limitations cited

in the above paragraphs.

5. MULTIPOLE EXPANSION METHOD

It is well known that the potential outside an

arbitrary distribution of charge can be expressed in
terms of the moments of the charge distribution.

Normally, one writes the potential outside the
distribution as:

_(r) = _ p(r I) dV (s)

where r is an arbitrary point exterior to the charge
distribution of volume V/, r / is a variable of

integration , and R = IRI = Ir -dl is the relative

position vector. To write the potential in terms of the

multipole moments of the charge distribution, 1/R is
expanded in spherical harmonics [Jackson, 1975]. The
volume projections of p(r/) onto the different

harmonic functions comprise the moments of the
charge distribution.

For our purposes, it is instructive (and less

tedious) to avoid the classic harmonic expansion of

l/R, and deal directly with (3). Expanding Ki(r ) in a

Taylor series about an arbitrary point r o above the

conducting plane, we immediately obtain the desired
result:

aE, =f t Iq(,0+0 ,l,8,j
V

+ {Oja,,KiI,8,qSx_ + .4 ao(r)dV
(6)

= Kt(r,) Q + VKll," P + --.

where Q = fAp(r)dV (monopole moment), P =

f(r-ro)Ap(r)dV (dipole moment), and j,k = 1, 2, 3.

The position vector, r, has components, xj, i.e.,
(x 1 , x2, x3 ) = (x, y, z) = r. Furthermore,

aj = a/axj =. (a/ax, a/ay, a/az) = v, sxj = (xj-Xjo)
=_ (r-to). The expression (6) employs the Einstein

convention for summing repeated indices. Note that
the monopole moment is mapped onto the zeroth

order derivative of Ki(r), the dipole moment onto the

lra'st derivative of Ki(r), the quadrupole onto the
second derivative, and so on. For expansions of _ in
this case, the interested reader is referred to

Fitzgerald [1957].

Ap(r)_

Rill y

Y

x eAEi

Figure 1. Geometry associated with a multipole
expansion model.

The 'kernel coefficients' in front of each

moment in (6) can be arranged into a vector, a i =

(K i , VK i ....), that premultiplies a moment vector,

# = (Q, P .... ), i.e., AE i = a i • #. Using vector
notation for a set of i = 1,...,m field change

measurements, g = AE + o, we obtain:

g =A/_ +o (7)

where the (m x co) matrix A = A(ro) has row vectors,

a i .

Figure 1 summarizes the general problem

implied by (7). Note from (4) the connection between

the linear method and a general multipole expansion,
i.e.,AE = g-o = Kf = A#. In effect, the matrix

operator, K, transforms the charge distribution, f, into

fields, whereas A transforms the moments of f into
fields.

If the lightning charges occupy a sufficiently
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small volume, we may neglect the higher order terms

in (7), and retain only the monopole and dipole terms.

In other words, if (r-ro) is sufficiently small, the

volume integral in (3) can be accurately computed

using a linear approximation of Ki(r ) throughout V.
With this truncation, # becomes a 4-vector with

components (O, P), and the net field change at the

ground, AE i = (A#)i, is identically the sum of the
changes given by (1) and (2). Hence, this truncated
'#-model' or 'QP-model' involves 7 parameters,

(ro,O,P), with the point charge, Q, and point dipole,

P, co-located at the point, r o.
Now, instead of searching for all of the

optimum values of (ro,Q,P) that minimize a X z

function (see section 2) we note that the optimum

moments at any location, ro , are given by direct

inversion of (7), i.e., #(ro) = (AtA)-lAt(g-o). Here,
A t is taken as the 'transpose of A'. If ro closely

approximates the true source location, a good fit to
the data will be achieved and the value of the error

function, e(ro) = [g - A(ro)#(ro)l 2, will be small.
Since AtA is only a (4 x 4) matrix, it is practical to

scan a large volume over the measurement network,

and determine the value of ro that makes e(ro) a
minimum.

Hence, this procedure avoids the problem of

relative minima since a thorough grid search is used

to estimate the optimum source location. The
optimum source moments at each location are

obtained from numerical matrix inversion. The speed

of scanning can be improved if all inverse matrices are

computed in advance, stored on disk, and then read

directly into memory during a grid search.
The method we have described also allows

one to retain moments beyond the dipole term if

desired. For instance, the traceless and symmetric

quadrupole moment tensor would only involve 5

additional moments. This implies a (9x9) matrix

inversion, (AtA) "1, at each point, ro.
It has been found that for several tens of

kilometers outside the perimeter of the measurement

network, the elements of A become small, and the
matrix AtA becomes ill-conditioned. In this case, it

will take more computer time to compute the inverse
of AtA, and the moment solution may be in error due

to excessive magnification of measurement errors. A

constrained least-squares approach that stabilizes
solutions for distant lightning can be written as:

_(rJ = (A*A+yI_-JA_ - o) (8)

Here, H is a constraint matrix and 7 is a factor that

determines how strongly the external constraints in H

are weighted (see Twomey [1977] and Koshak and
Krider [1993] for more details on constrained linear

inversion techniques and error magnification).

In this paper, we only consider lightning
flashes that are over the network or within about 10

kilometers of the network perimeter. The optimum
values of "I and the form of the constraint matrix

optimum for distant lightning will not be considered
in detail. Since a measurement network extracts little

information about lightning sources several tens of

kilometers away, external constraints (not
measurements) become the driving factor in

determining the character of a solution. Nonetheless,

we will choose H = I (identity matrix) in order to

impose the constraint that the sum of the squares of
the moments, #2, is not exceedingly large. With this
constraint, a value "/ = 10-9 has been found to

produce optimum results in our domain of interest.

6. SIMULATED TESTS OF THE METHOD

In this section, we test the expansion

method's ability to retrieve known, computer

simulated lightning sources. To do this, we consider
the ground-based field mill network at the NASA

Kennedy Space Center and USAF Eastern Space and

Missile Center (KSC-ESMC) operated in 1978 and

shown below in Figure 2.

) 7 s 6 8 N

_- ""_ 11 12

X (km)

Figure 2. The KSC-ESMC field mill network

operated in 1978. Solid dots indicate (x,y) locations

of simulated lightning sources.

Since it is not uncommon that a few mills are
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inoperative during a storm, we have removed mills 5,

12, 15, and 17 from our simulated analyses. These 4

mills did not operate properly during a small storm

occurring over the network on July 11, 1978 [Koshak,

1991].
The 3 solid dots that are oriented east to west

in Figure 2 indicate the placement of known sources

relative to the field mill network. At these locations,
the source altitudes were z = 3, 5, 7 ..... 17 km. A total

of 100 known sources were generated at each of the
24 locations, i.e., a total of 2400 sources were

analyzed. Each source was assigned a monopole

moment and a dipole moment. The monopole was
varied randomly between 0 and 50 C and each

cartesian component of the dipole moment vector was
varied between 0 and 500 C kin.

To find the minimum value of e, we scanned
a large volume above the KSC-ESMC network with 2

km resolution (i.e., x and y each ranged between: 2, 4,

..., 36 km; and z = 2, 4 ..... 18 kin). From this scan we

obtained a minimum value, e(rmin). Next, we

continued with a higher resolution (500 meter) scan
centered _+1.5 km about rmi n in each of the three

cartesian directions. Using a SGI XS-4000 work-
station, a single lightning source took less than 11

seconds to analyze. This is noteworthy because we

did not read inverse matrix elements from previously
generated data files (see' section 5).

Tables 1 and 2 summarize the statistics of the

errors in the retrieved OP-solutions. In Table 1, no

error was added to the simulated field changes, and in
Table 2 a 5% random error was added to the AEs.

The location and dipole errors are determined by
taking the magnitude of the difference vector, i.e.,

[rre t - rkno[, and [Pret " Pkno[, where the subscripts
'ret' and 'kno' denote retrieved and known quantities,

respectively. The monopole error is simply the
absolute value of the scalar difference between the

retrieved and known monopole values. Median

distance errors with asterisks indicate that a majority
of the 100 sources at that location had no location

error.

! 17
15

13i

(I,19) II
9

7

5
3

17

15

13

(10,19) 11

9

7

5

3

17

15

13

(19,19) II

9i
7

5

J 3

Location Error (kin)
Median I Mean

0.25 0.26

0.00 0.50

[ Std

*0.00 0.04

0.00 0.31

*0.00 I.19

0.00 0.08

0.00 0.40

1.58 2.21

0.00 0.71

"0.00 0.06

0.00 0.29

0.00 0.48

*0.00 0.05

0.00 0.30

0.00 0.80

0.00 0.00

0.00 0.00

0.00 0.44
0.00] 0,37

*0.00 O.13

0.00 0.20

0.00 0.50

0.00 0.00

0.00 0.53

DCV.

0.26

1.52

0.42

0.40

2.59

0.35

1.17

2.72

2.01

0.57

0.67

1.40

0.52

0.78

2.22

0.00

0.001

1.65 0.01 0.85

1.71 0.03 0.311

0.96 0.00 0.07]

0.28 0.00 0.80

1.81 0.03 0.77

0.00 0.00 0.00

1.68 0.00! 1.20

MonopoleError(C) DipoleError(Ckm)

Median [ Mean I StdDev. Median t Mean [ Std Dev.

0.34 3.94_ 4.84 14.59 I 48.13 52.68

0.04 2.55 8.39 0.30 44.00 134.04

0.00 0.02 0.18 0.01 0.86 8.53

0.00 12.68 31.69 0.01 67.53 122.52

0.13 7.57 16.26 0.64 95.14 199.86

0.001 0.99 5.67 0.00 14.12 63.42

0.00 14.58 28.24 0.0l 70.86 142.75

9.28 25.06 29.71 171.65 239.54 274.54

0.03 0.94 2.55 0.33 34.09 89.1 I

0.00 0.17 1.68 O.Ol 5.73 57.24

0.00 1.66 3.58 0.0l 30.37 59.31

0.03 3.80 25.73 0.25 42.70 127.25

0.00 0.10 0.93 0.00 3.38 33.74

0.00 3.04 8.64 0.01 43.08 105.51

0.03 2.03 5.74 0.26 60.69 169.4 !

0.00 0.00 0.00 0.01 0.01 0.00

0.00 0.00 0.00 0.01 0.02 0.0 !

1.58 0.05

1.26 0.41

0.50 0.01

1.60 0.03

2.48 0.40

0.00 0.01

3.84 0.02

32.43 93.38

18.77 82.15

6.11 43.22

21.33 33.60i

30.38 108.74

0.01 0.00

33.84 79.20

Table 1. Statistics of 2400 simulated lightning sources having a monopole and dipole moment. The median,

mean, and standard deviation are computed from I00 randomized sources at each of the 24 (x,y,z) source
locations. No error was added to the simulated AEs.
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X,Y

(kin)

(1.19)

(10,19)

(19,19)

Table 2.

Z Location Error (km) Monopole Error (C) Dipole Error (Ckm)
(kin) Median Mean Std Dev. Median Mean IStd Dev. Median Mean Std Dev.

17 0.50 0.39 0.35 3.78 5.79 6.40 60.24 67.61 65.81

15 1.12 2.18 2.591 12.77 37.76 139.45 135.65 262.61 413.02

13 "0.00 0.01 0,07 0.72 1.14 1.17 10.54 14.25 13.83!

11 0.50 0.51 0.92 4.83 14.66 25.52 44.01 101.24 152.66

9 1.12 2.27 2155 25.49 44.09 95.23 190.75 270.93 295.75

7 0.00 0.18 0,63 1.14 3.75 9.81 13.75 45.72 104.69

5 0.50 0.76 1,31 13.49 36.82 56.46 90.70 159.62 201.99
3 2.24 3.72 3,32 41.34 60.15 61.38 348.00 402.93 263,14

17 150 2.72 3,18 6.67 8.11 6.91 130.05 180.80 161.52

15 0.00 0,24 0.32 0.56 1.47 1.96 13.65 35,58 43.16

13 0.50 0.61 0,74 2.35 4.70 6.86 50.20 75.06 90.19

11 1.12 1.99 2.38 6.35 9.37 10.35 120.40 188.87 169.43

9 0.00 0.14 0.55 0.62 1.26 1.78 8,69 23,09 43.30

7 0.50 0.45 0,41 3.10 5,01 7.12 57.54 69.91 75.22

5 0.87 2.40 3.05 7.74 14.61 24.49 104.35 207.42 230.75

3 0.00 0.05 0,21 0.73 1.14 166 8.68 16.62 26.37
I iii

17 0.71 0.84 1,07 1.51 2.36 2.67 ! 57.07 72.63 84.89
15 0.71 1.17 1158 2.65 4.26 5.01 61.91 109.59 139.59

13 i .54 2.36 2,69 4.63 5.99 5.23 98.26 165.43 180.69

11 0.50 0.64 1".15 1.10 2.04 2.57! 37.29 58.61 81.70

9 0.71 1.02 1,44 2.19 4.39 5,25 50.83 99.05 117.58

7 1.23 2.68 3.41 4.49 7.02 9.17 105.05 177.64 187.63

5 0.00 0.33 0.40 1.09 1.66 1,77 21.47 41.89 46.59

0.71 1.03 1.88 2,03 5.80 23.22 55,14 89.67 148.76

Same analyses as given in Table 1 except that a S% random error was added to the simulated AEs.

7. DISCUSSION

A few sources (of the 100 randomized at each

location) resulted in poor retrievals and large solution
errors. This in turn has biased the mean values in

Tables 1 and 2 toward the high end. A more

representative statistic is the median error. Since the

majority of sources at a point were retrieved

accurately, the median error values are almost always
smaller than the mean errors, and in most cases are

substantially smaller.

Although the addition of a 5% error dearly

increases solution errors (i.e., compare errors in Table
1 to those in Table 2), the standard deviation of the

errors given in Table 1 indicate that there are

occasionally poor retrievals even when exact AE
values are used. The ability of the network to resolve

the values of O and P at a given point depend on the

particular values chosen for O and P and the location
of the source. This is consistent with the fact that AE

inversions produce solutions that are inherently

nonunique, i.e., it is possible to fred more than one

QP-solution for a given QP-source. Note that the

effects of source location are particularly pronounced
for the case of the distant, low-altitude sources [see

Tables 1 and 2 for sources located at r = (1 kin, 19

kin, 3 k=)].
Overall, the multipole expansion method

produces favorable retrievals. When error is added to

the AEs (Table 2), median distance errors are all

within about 2 km (except for the distant, low-altitude

sources), and errors are generally smaller over the

network. Monopole errors for sources over the
network are within 5 C, and errors in a single

component of P are within about 105 Ckm/31/2 "
60.6 Ckm.

8. SUMMARY

Presently, there is a need for a real-time
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Li#;tning Charge Mapper (LCM) system at the

NASA Kennedy Space Center (KSC) to improve
warnings against atmospheric electrical hazards to

space vehicle operations. An LCM system would, in
general terms, require ground-based observations of

AE, and a quick and accurate computer algorithm to

analyze the AEs to determine the lightning charge
locations.

In this paper, we have described a quick yet
thorough method for determining the charge moments

and location of a lightning flash. Given the
deficiencies in conventional linear and nonlinear AE

analyses (section 4), we believe that this new approach
is best suited for meeting the requirements of an
LCM.

The power of this method resides in the fact

that the optimum charge moments do not have to be
searched for (in the sense of X 2 minimization

procedure), but are instead computed directly from
linear inversion. No matter how many moments one

attempts to find, the expansion method only requires

searching for the 3 (nonlinear) spatial parameters that

describe lightning location. Although we could have

employed gradient/expansion methods to speed up
this search, our direct solution for charge moments

are sufficiently quick to allow for a high resolution

grid search of the optimum spatial parameters.
Because of this, the problems of relative minima are
avoided.

Finally, we have tested the mnltipole

expansion method using computer simulated lightning
sources and have found reasonably small errors in the

derived monopole, dipole, and lightning location when

the source is placed over the network. In the future,

we will apply this method to actual storm data [e.g.

July, 11 1978, and storms from the Convection and

Precipitation/Electrification Experiment (CAPE)] and

we will compare our results with other AE analyses.
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